![](/static/c15a0eb1/assets/icons/icon-96x96.png)
![](https://lemmy.world/pictrs/image/c47230a8-134c-4dc9-89e8-75c6ea875d36.png)
Here’s the generation statistics of the BN-800 reactor I mentioned before: https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=451 It’s been operating at about 70% of it’s rated capacity basically since it was first turned on, that’s large scale power generation. Breeder reactors have been in commercial use for decades (see also: Phenix and Superphenix).
The simple reason why breeder reactors aren’t the default is because most reactors don’t need to be breeders. The two main upsides of a breeder reactor is a) breeding of nuclear material, which as I said before was only ever a concern in the very early days of nuclear power. We have thousands of years’ worth of fuel available now. b) The reuse of nuclear waste for additional power generation. Of course you have to have nuclear waste to reuse first, which necessitates many other, non-breeder reactors already being in use, so breeder reactors are usually restricted to countries that already have significant investment into nuclear power, like France, Russia, China, etc… If you don’t need to breed more nuclear fuel, and you don’t have waste to reprocess you might as well keep it simple and build a regular LWR reactor.
Not really. While working at the OS-level can typically require ‘unsafe’ operations a core tenet of writing Rust is making safe abstractions around unsafe operations. Rust’s ‘unsafe’ mode doesn’t disable all safety checks either - there are still many invariants that the Rust compiler enforces that a C compiler won’t, even in an ‘unsafe’ block.
And even ignoring all of that, if 10% of the code needs to be written in Rust’s ‘unsafe’ mode that means the other 90% is automatically error-checked for you, compared with 0% if you’re writing C.