I mean ntfy’s primary purpose is not dependent on UnifiedPush – all UP functionality could be removed and ntfy would still work as intended.
Ntfy server knows how to be a UP gateway, and relays those messages to the ntfy app, which knows how to be a UP distributor.
As far as I understand it, a client app using UP to recieve push notifications does perform a registration step with the UP gateway (via the distributor app which communicates with the gateway via its own transport), which sets up and responds with the api endpoint details, which the client app relays to its servers, which can then send UP notifications via the specified gateway.
As far as I understand it, a client app using UP to recieve push notifications does perform a registration step with the UP gateway (via the distributor app which communicates with the gateway via its own transport), which sets up and responds with the api endpoint details, which the client app relays to its servers, which can then send UP notifications via the specified gateway.
So, if there was to be encryption done by UP, it would be handled by the gateway? For example, for Matrix, it would then be handled by the Matrix gateway in Ntfy [1]?
I mean ntfy’s primary purpose is not dependent on UnifiedPush – all UP functionality could be removed and ntfy would still work as intended.
Ntfy server knows how to be a UP gateway, and relays those messages to the ntfy app, which knows how to be a UP distributor.
As far as I understand it, a client app using UP to recieve push notifications does perform a registration step with the UP gateway (via the distributor app which communicates with the gateway via its own transport), which sets up and responds with the api endpoint details, which the client app relays to its servers, which can then send UP notifications via the specified gateway.
So, if there was to be encryption done by UP, it would be handled by the gateway? For example, for Matrix, it would then be handled by the Matrix gateway in Ntfy [1]?
References